1、二次函数 I.定义与定义表达式 一般地,自变量x和因变量y之间存在如下关系: y=ax^2+bx+c(a,b,c为常数,a≠0,且a决定函数的开口方向,a>0时,开口方向向上,a<0时,开口方向向下,IaI还可以决定开口大小,IaI越大开口就越小,IaI越小开口就越大.) 则称y为x的二次函数。
2、 二次函数表达式的右边通常为二次三项式。
3、 II.二次函数的三种表达式 一般式:y=ax^2;+bx+c(a,b,c为常数,a≠0) 顶点式:y=a(x-h)^2;+k [抛物线的顶点P(h,k)] 交点式:y=a(x-x1)(x-x2) [仅限于与x轴有交点A(x1,0)和 B(x2,0)的抛物线] 注:在3种形式的互相转化中,有如下关系: h=-b/2a k=(4ac-b^2;)/4a x1,x2=(-b±√b^2;-4ac)/2a III.二次函数的图像 在平面直角坐标系中作出二次函数y=x²的图像, 可以看出,二次函数的图像是一条抛物线。
(资料图片)
4、 IV.抛物线的性质 1.抛物线是轴对称图形。
5、对称轴为直线 x = -b/2a。
6、 对称轴与抛物线唯一的交点为抛物线的顶点P。
7、 特别地,当b=0时,抛物线的对称轴是y轴(即直线x=0) 2.抛物线有一个顶点P,坐标为 P [ -b/2a ,(4ac-b^2;)/4a ]。
8、 当-b/2a=0时,P在y轴上;当Δ= b^2-4ac=0时,P在x轴上。
9、 3.二次项系数a决定抛物线的开口方向和大小。
10、 当a>0时,抛物线向上开口;当a<0时,抛物线向下开口。
11、 |a|越大,则抛物线的开口越小。
12、 4.一次项系数b和二次项系数a共同决定对称轴的位置。
13、 当a与b同号时(即ab>0),对称轴在y轴左; 当a与b异号时(即ab<0),对称轴在y轴右。
14、 5.常数项c决定抛物线与y轴交点。
15、 抛物线与y轴交于(0,c) 6.抛物线与x轴交点个数 Δ= b^2-4ac>0时,抛物线与x轴有2个交点。
16、 Δ= b^2-4ac=0时,抛物线与x轴有1个交点。
17、 Δ= b^2-4ac<0时,抛物线与x轴没有交点。
18、 V.二次函数与一元二次方程 特别地,二次函数(以下称函数)y=ax^2;+bx+c, 当y=0时,二次函数为关于x的一元二次方程(以下称方程), 即ax^2;+bx+c=0 此时,函数图像与x轴有无交点即方程有无实数根。
19、 函数与x轴交点的横坐标即为方程的根。
20、 答案补充 画抛物线y=ax2时,应先列表,再描点,最后连线。
21、列表选取自变量x值时常以0为中心,选取便于计算、描点的整数值,描点连线时一定要用光滑曲线连接,并注意变化趋势。
22、 二次函数解析式的几种形式 (1)一般式:y=ax2+bx+c (a,b,c为常数,a≠0). (2)顶点式:y=a(x-h)2+k(a,h,k为常数,a≠0). (3)两根式:y=a(x-x1)(x-x2),其中x1,x2是抛物线与x轴的交点的横坐标,即一元二次方程ax2+bx+c=0的两个根,a≠0. 说明:(1)任何一个二次函数通过配方都可以化为顶点式y=a(x-h)2+k,抛物线的顶点坐标是(h,k),h=0时,抛物线y=ax2+k的顶点在y轴上;当k=0时,抛物线a(x-h)2的顶点在x轴上;当h=0且k=0时,抛物线y=ax2的顶点在原点 答案补充 如果图像经过原点,并且对称轴是y轴,则设y=ax^2;如果对称轴是y轴,但不过原点,则设y=ax^2+k定义与定义表达式 一般地,自变量x和因变量y之间存在如下关系: y=ax^2+bx+c (a,b,c为常数,a≠0,且a决定函数的开口方向,a>0时,开口方向向上,a<0时,开口方向向下。
23、IaI还可以决定开口大小,IaI越大开口就越小,IaI越小开口就越大。
24、) 则称y为x的二次函数。
25、 二次函数表达式的右边通常为二次三项式。
26、 x是自变量,y是x的函数 二次函数的三种表达式 ①一般式:y=ax^2+bx+c(a,b,c为常数,a≠0) ②顶点式[抛物线的顶点 P(h,k) ]:y=a(x-h)^2+k ③交点式[仅限于与x轴有交点 A(x1,0) 和 B(x2,0) 的抛物线]:y=a(x-x1)(x-x2) 以上3种形式可进行如下转化: ①一般式和顶点式的关系 对于二次函数y=ax^2+bx+c,其顶点坐标为(-b/2a,(4ac-b^2)/4a),即 h=-b/2a=(x1+x2)/2 k=(4ac-b^2)/4a ②一般式和交点式的关系 x1,x2=[-b±√(b^2-4ac)]/2a(即一元二次方程求根公式)。
本文就为大家分享到这里,希望小伙伴们会喜欢。
下一篇:最后一页
夏天到了,洞洞鞋也重出了江湖,成为了很多人的夏日“神鞋”,因为轻便舒适又不闷热,受到很多人的喜爱。近
交通是兴国之要、强国之基,加快推动交通发展,离不开科技创新赋能支撑。当前正值全国科技活动周,交通领域有
作为内娱的现象级综艺,前三季《浪姐》的成绩有目共睹,芒果凭借这个系列赚得盆满钵满,宁静、孟佳、李斯丹
高速增长的户用分布式光伏市场已成为各大新能源投资商和龙头企业的“兵家必争之地”。户用市场异军突起的同
X 关闭
初中二次函数知识点汇总_初中二次函数知识点-世界热议
龙口公安组织开展社会面治安清查行动
“爱上你,疗愈我”公益直播分享会在京举办-环球看点
ADC领域诞生去年国内药企最大交易|世界独家
中航西飞股东户数增加526户,户均持股42.5万元 世界观焦点
X 关闭
上海嘉定体育馆隔离救治点首批新冠病毒感染者顺利“出院”
千里支援显真情 安徽六安捐赠的100余吨新鲜蔬菜抵沪
缉毒英雄蔡晓东烈士安葬仪式在云南西双版纳举行
多方合作推动青海建设国际生态文明高地
海口新增1例确诊病例和2例无症状感染者